Essentials of Astronomy (Part-1)
 Units \& Magnitude Scale

S N Hasan

Starry sky

Our Position in the Universe (order of magnitude)
Humans
$\sim 2 \mathrm{~m}=10^{0} \mathrm{~m}$

Earth $6400 \mathrm{~km} \sim 10^{6} \mathrm{~m}$ Solar System

Planets $10^{6}-10^{7} \mathrm{~m}$ Planetary Systems $10^{13} \mathrm{~m}$

Milky Way Galaxy

Galaxy $10^{19} \mathrm{~m}$

Local Group

Galaxy Clusters $10^{22} \mathrm{~m}$

Virgo Cluster
Visible Universe 14 billion It

Super Clusters $10^{24} \mathrm{~m}$

Visible Universe $10^{26} \mathrm{~m}$

Units - Mass, Length \& Time

- Unit of Mass:

$$
\mathrm{M}_{\text {sun }}=1.99 \times 10^{30} \mathrm{~kg}
$$

- Unit of length
$\mathrm{AU}=150,000,000 \mathrm{~km}=150$ million $\mathrm{km}=1.5 \times 10^{8} \mathrm{~km}$
light year $=$ distance travelled by light in one year $=9.5 \times 10^{12} \mathrm{~km}$
parsec $(p c)=3.26$ light years $=3.09 \times 10^{13} \mathrm{~km}$
- Unit of Time
seconds
year $=3.16 \times 10^{7} \mathrm{sec}$. (Earth Year)

Stars - brightness (Luminosity)

Magnitude - Brightness - Luminosity

Hipparcus (2 B.C.)
Classified stars on the basis of brightness
Magnitude I, II,, VI
Brightest I magnitude
Faintest VI magnitude
First magnitude stars were brightest
Sixth magnitude stars were faintest

Depends on:
Distance
Its intrinsic brightness

Eye response not linear but logarithmic

Magnitude
I II III IV V VI

Magnitude difference of 5
equivalent to a star being 100 times brighter
Two successive classes differ in apparent brightness by a factor of (Pogson 1856)
$(100)^{1 / 5}=2.512$

Luminosity or Brightness of a star depends on:

Distance from the observer
(closer stars look brighter and distant look fainter)

Temperature of the Star

Size of the star (Radius)

$$
L=4 \pi R^{2} \sigma T^{4}
$$

$$
\begin{aligned}
L & =\text { star's luminosity, in watts } \\
R & =\text { star's radius, in meters } \\
\sigma & =\text { Stefan-Boltzmann constant }=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \\
T & =\text { star's surface temperature, in kelvins }
\end{aligned}
$$

The apparent magnitude scale star's apparent brightness denoted by "m"

The absolute magnitude of a star is the apparent magnitude if it was viewed from a distance of 10 parsecs denoted by "M"

Some apparent magnitudes

Decrease in luminosity with increase in distance

Decrease in luminosity as square of the distance

Magnitude scale

Stars in two magnitude class luminosity differs by $100^{1 / 5}$
Suppose we have 2 stars

$$
\begin{aligned}
& \text { R} l_{1} \\
& l_{2} / l_{1}=(100)^{1 / 5\left(\mathrm{~m}_{1}-\mathrm{m} 2\right)} \\
& \left(m_{1}-m_{2}\right)=2.5 \log _{10}\left(l_{2} / l_{1}\right)
\end{aligned}
$$

If we have a star moved to 10 pc

$$
\begin{aligned}
& m-\mathcal{M}=2.5 \log _{10}\left(d^{2} / 10^{2}\right) \\
& m-\mathcal{M}=5 \log _{10}(d / 10) \\
& m-M=5 \log _{10}(d)-5
\end{aligned}
$$

The stars send us not only that visible and gross light which strikes our bodily eyes, but from them also comes to us a light far more subtle, which illuminates our minds.

- Henri Poincare

Thank You

Our Universe

Solar System

Sun- Neptune 4.545 billion km Sun - Sedna 143.73 billion km
~ 960.78 AU

Local Group 10 million light-years

~ 50,000 AU (1 lt yr) 1-2 lt yrs

Virgo Super Cluster
55 million light years

MW 100,000 It yrs

Visible Universe
~ 13.7 billion It yrs

