Galaxies & their Structure

S N Hasan MANUU, Hyderabad

Cag Shedir •••

Almaak

Mirach

Alpheratz

Cag Shedir •••

Almaak

Mirach

Alpheratz

μAnd

Nebula (pl. Nebulae)

- Nebula from Latin "cloud"
- In the past the word Nebula was used for extended, fuzzy astronomical objects
- Star forming regions'
- Supernova remnants
- Planetary Nebulae
- Globular Clusters
- Galactic Clusters
- Galaxies

Nebula is an interstellar cloud of dust, hydrogen, helium and other ionized gases. Nebulae are often star-forming regions, such as in the Eagle Nebula or Stellar remnants such as Crab Nebula

μAnd

Galaxies: Large collection of Stars, Dust and Gas

- Typical Mass:
 10⁹ 10¹² M_{sun}
 - $M_{sun} \sim 10^{30} \text{ kg}$
- Typical Size30 kpc
 - 1 kpc = 1000 pc.
 - 1 pc ~ 3.26 lt. yrs.
 - 1 lt. yr = distance
 - traveled by light in 1 year.

Historical Perspective

- Geocentric
- Heliocentric (Copernicus, 1543) accepted in ~ mid 17th century
- Galileo (1610) turned his telescope to the Milky Way.
- William Herschel late 18th century
- Shapley (1918) shows that Sun is not in the center of the Milky Way galaxy
- Single Galaxy (1900-1920)
 Shapley-Curtis debate
- Many Galaxies (1920-1930)
 Hubble resolves stars in the Andromeda Galaxy, Spectroscopic measurements of
 Slipher & works of Humason & Hubble

Galaxy Zoo

Galaxies a closer look

Hubble's Tuning Fork Diagram

Hubble (1936) tuning fork

Hubble's Galaxy Classification Scheme

Why do galaxies have different morphologies?

Interacting Galaxies

Background & Early History

Galaxies were seen as isolated, mostly un-evolving island universes.

- Lack of high quality imaging & spectroscopic data in various wavebands.
- Detailed theories of stellar evolution & nucleosynthesis were not discovered
 - Blind Spot: Sheer disbelief that gravity could produce such exotic structures such as tails, bridges, etc.

A look at the past: NGC 4038/4039 Antennae

NGC 4038/4038 – The Antennae

NGC 4038/4039

allow us to set limits

 on the total amount of
 dark matter in the
 interacting galaxies.

2 million years

The N-body problem

The study of the motion of N bodies moving under mutual gravitational attraction.

Energies comparable to binging energies

~ 0.1 % c

3 X 10⁸ yrs.

 $\begin{array}{l} \mathsf{M}_{1} \sim \mathsf{M}_{2} \sim 10^{12} \mathsf{M}_{\text{sun}} \\ \mathsf{M}_{\text{gals}} = 2 \ X \ 10^{42} \ \text{kg} \\ \mathsf{V}_{\text{rel}} = 300 \ \text{km} \ \text{/sec} \\ \mathsf{E} \sim 10^{53} \ \text{J} \end{array}$

A near mine is as good as a hit in this field."
Involve a tremendous amount of energy
Results in important evolutionary effects

Not a high energy phenomenon

- Velocities are small
- Extremely slow

When galaxies come close

Tidal forces act at gigantic scales- resulting in the formation of:

- Tails
- Bridges

Conditions for the formation of tails & bridges:

- Galaxies should approach each other in parabolic or highly eccentric orbits
- Prograde orbits
- Galaxies should not penetrate much.

Galaxy Mergers

- The galaxies should approach each other with small relative velocities
- Depending upon the initial conditions stars gain or loose energy.
- Stars which gain energy move outward those which loose fall inward.
- In general a star gains energy.
- The increase in overall energy loosen them and make them disrupt.
- The increase of internal energy of the galaxies is at the expense of orbital energy- resulting in a Merger.

Cross section Sun 10¹⁷ Some interestin m^2 Surface density of stars collisions near Sun ~ 10 per light yr sqr. Most of the r i.e 10⁻³² with a Small probability for direct star – star collisions. Collision probability ~ 10⁻¹⁵ Gas components collide in gas rich galaxies

Thermal state

Simulating the Mice (NGC 4676)

Merger of Spirals to form an Elliptical Galaxy

Shells of stars observed around some elliptical galaxies are probably the remains of past collisions

Giant elliptical galaxies at the centers of clusters seem to have consumed a number of smaller galaxies

Effect of the Environment on Galaxy morphology and evolution

Local Group

Comprises more than 54 galaxies, most of them dwarf galaxies

Galaxy Clusters

Coma Cluster

over 1,000 identified galaxies. mostly elliptical and SO galaxies a few spirals of younger age and many of them probably near the outskirts of the cluster

Virgo Cluster

- Comprising ~ 1300 (and possibly up to 2000) galaxies
- fairly heterogeneous mixture of spirals and ellipticals.

Environmental processes I: Ram-pressure stripping

Spiral galaxy ESO 137-001 as it moves through the heart of the galaxy cluster Abell 3627.

Animation

ESO 137-001 a spiral galaxy zipping through a crammed cluster of galaxies. Gas is being pulled from its disc in a process called ram pressure stripping. The galaxy appears to be losing gas as it plunges through the Norma galaxy cluster.

Environmental processes :

Dynamical Harassment Starvation – Strangulation Cannibalism

Thank you