
Unit 2: Thermodynamic Potentials

Dr Priya Hasan∗

Department of Physics
Maulana Azad National Urdu University

Gachibowli, Hyderabad 500 032

March 9, 2020

Abstract

Thermodynamic Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwells re-
lations & applications – Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for (CP − CV ),
CP /CV , TdS equations

1 Deriving the Maxwell Relations

A thermodynamic potential is a quantity used to represent some thermodynamic state in a system. We can
define many thermodynamic potentials on a system and they each give a different measure of the ‘type’ of
energy the system has. In this chapter, we will consider four such potentials.

Consider a system undergoing some thermodynamic process which we are interested in analysing. Assume
that we know that two quantities of that system will be constant throughout the process. Then, if we can
find the thermodynamic potential whose natural variables are those quantities, then we can easily analyse the
system using that potential.

A natural variable of a thermodynamic potential is special because when the natural variables of a thermo-
dynamic potential are held constant during a process, it means that we can easily use that potential to analyse
the process because that thermodynamic potential will be conserved.

1.1 Internal Energy

The internal energy of a system is the energy contained in it due to its molecular constitution and motion. It is
the sum of kinetic and potential energy of the system. This is excluding any energy from outside of the system
(due to any external forces) or the kinetic energy of a system as a whole. This is only the energy of the system
due to the motion and interactions of the particles that make up the system.

Let’s consider the first law of thermodynamics, which gives us a differential form for the internal energy:

dU = dQ+ dW

We know that the work done on a system,

dW = PdV

Additionally, from the second law of thermodynamics, in terms of entropy, we know that the heat transferred
is given by:

dQ = TdS

dU = TdS − PdV

Taking partial derivates of the internal energy with respect to S and V,(
∂U

∂S

)
V

= T,

(
∂U

∂V

)
S

= −P

From the above we know that the natural variables of a thermodynamic potentials are the ones which, if
kept constant, mean that the potential is conserved through some process. In this case this means that dU=0
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is achieved when dS and dV are both zero. So entropy, S, and volume, V, are the natural variables of internal
energy, U. Since dU is a perfect differential,

∂

∂V

(
∂U

∂S

)
V

=
∂

∂S

(
∂U

∂V

)
S(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

1.2 Helmholtz Free Energy

The Helmholtz free energy (represented by the letter F) of a system is defined as the internal energy of the
system minus the product of its entropy and temperature:

F = U − TS

This represents the amount of useful work that can be obtained from a closed system at constant temperature
and volume. Again, I won’t spend too long on the uses of this thermodynamic potential.

Let’s now find the differential form of this, the same way we did with enthalpy:

dF = dU − d(TS) = dU − TdS − SdT

Substituting in the differential form of internal energy

dU = TdS − PdV

dF = TdS − PdV − TdS − SdT

dF = −PdV − SdT

This is the differential form of the Helmholtz free energy. We can now immediately see that volume, V, and
temperature, T, are the natural variables of the Helmholtz free energy, F. Taking partial derivates ,(

∂F

∂V

)
T

= −P,
(
∂F

∂T

)
V

= −S

Since dF is a perfect differential,
∂

∂V

(
∂F

∂T

)
V

=
∂

∂T

(
∂F

∂V

)
T(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

1.3 Enthalpy

Enthalpy (represented by the letter H) is a thermodynamic potential of a system, which is equal to the internal
energy of the system plus the product of its pressure and volume:

H = U + PV

This represents the total heat content of a system and is often the preferred potential to use when studying
many chemical reactions which take place at constant pressure. This is because when pressure is constant, the
change of enthalpy is equal to the change in internal energy of the system.

The differential form is:
dH = dU + d(PV ) = dU + PdV + V dP

dU = TdS − PdV

dH = TdS − PdV + PdV + V dP

dH = TdS + V dP

This is the differential form of enthalpy. We can apply the same idea we applied to internal energy here to find
the natural variables of enthalpy. We can see that dH=0 when dS and dP are zero. So entropy, S, and pressure,
P, are the natural variables of enthalpy, H. Taking partial derivates,(

∂H

∂S

)
P

= T,

(
∂H

∂P

)
S

= V
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Since dH is a perfect differential,

∂

∂P

(
∂H

∂S

)
P

=
∂

∂S

(
∂H

∂P

)
S(

∂T

∂P

)
S

=

(
∂V

∂S

)
P

1.4 Gibbs free energy

Gibbs free energy (represented by the letter G) is used to calculate the amount of work a system can perform at
constant temperature and pressure. As such, it is very useful when studying phase transitions, which happen at
such conditions. This is defined as the enthalpy of a system minus the product of the temperature and entropy
of the system:

G = H − TS
Finding the differential form of this (as above):

dG = dH − d(TS) = dH − TdS − SdT

Substituting in the differential form of enthalpy

dH = TdS + V dP

dG = TdS + V dP − TdS − SdT
dG = V dP − SdT

This is the differential form of the Gibbs free energy. We can see that pressure, P, and temperature, T, are the
natural variables of the Gibbs free energy, G. entropy, S, and pressure, P, are the natural variables of enthalpy,
H. Taking partial derivates, (

∂G

∂T

)
T

= V,

(
∂G

∂T

)
P

= −S

Since dG is a perfect differential,
∂

∂T

(
∂G

∂P

)
T

=
∂

∂P

(
∂G

∂T

)
P(

∂V

∂T

)
P

= −
(
∂S

∂P

)
T

2 Gibb’s-Helmholtz Equation

For the Helmholtz’s Function:
dF = dU − d(TS) = dU − TdS − SdT

Substituting in the differential form of internal energy

dU = TdS − PdV

dF = TdS − PdV − TdS − SdT
dF = −PdV − SdT

At constant Volume:
dF = −SdT

Taking partial derivatives , (
∂F

∂T

)
V

= −S

F = U − TS
U = F + TS

Therefore:

U = F − T
(
∂F

∂T

)
V

This is Gibbs-Helmholtz Equation.
The above equation iis independent of Entropy, hence it can be easily applied to study the thermodynamics

of isothermal changes in a chemical system.
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3 Alternate derivation of Maxwell’s Relations

The four Maxwell Relations can be derived in the following way. The state of a homogemeous system is
determined completely if we know its mass and any two of the thermodynamic variables P,V,T,U and S. Thus
the internal energy U of the sysem is completely determined if V and T are given. From the first law of
thermodynamics, which gives us a differential form for the internal energy:

dU = dQ+ dW

We know that the work done on a system,

dW = −PdV

Additionally, from the second law of thermodynamics, in terms of entropy, we know that the heat transferred
is given by:

dQ = TdS

dU = TdS − PdV

Let us select x and y as any two independent variables out of the five (P, V, T, U, S) Suppose U, S, V are functions
of x and y. Therefore

∂U =

(
∂U

∂x

)
y

dx+

(
∂U

∂y

)
x

dy

∂S =

(
∂S

∂x

)
y

dx+

(
∂S

∂y

)
x

dy

∂V =

(
∂V

∂x

)
y

dx+

(
∂V

∂y

)
x

dy

Substituting values of dU, dS, dV ,(
∂U

∂x

)
y

dx+

(
∂U

∂y

)
x

dy = T

[(
∂S

∂x

)
y

dx+

(
∂S

∂y

)
x

dy

]
− P

[(
∂V

∂x

)
y

dx+

(
∂V

∂y

)
x

dy

]

Equating coefficients of dx, dy, (
∂U

∂x

)
y

= T

[(
∂S

∂x

)
y

]
− P

[(
∂V

∂x

)
y

]
(
∂U

∂y

)
y

= T

[(
∂S

∂y

)
y

]
− P

[(
∂V

∂y

)
y

]
Differentiating both the above equations by dy, dx respectively,(

∂2U

∂x∂y

)
=

(
∂T

∂y

)
x

(
∂S

∂x

)
y

+ T

(
∂2S

∂x∂y

)
−
(
∂P

∂y

)
x

(
∂V

∂x

)
y

− P
(
∂2V

∂x∂y

)
(
∂2U

∂x∂y

)
=

(
∂T

∂x

)
y

(
∂S

∂y

)
x

+ T

(
∂2S

∂x∂y

)
−
(
∂P

∂x

)
y

(
∂V

∂y

)
x

− P
(
∂2V

∂x∂y

)
Here dU is a perfect differential, and hence we can change the order of differentiation. Equating the above

equations, (
∂T

∂y

)
x

(
∂S

∂x

)
y

−
(
∂P

∂y

)
x

(
∂V

∂x

)
y

=

(
∂T

∂x

)
y

(
∂S

∂y

)
x

−
(
∂P

∂x

)
y

(
∂V

∂y

)
x

This is the general Maxwell Equation. 1. First Relation
x = S, y = V

∂S

∂x
= 1,

∂V

∂y
= 1

∂S

∂y
= 0,

∂V

∂x
= 0

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V
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This is Maxwell’s first thermodynamic relation.

1. First Relation
x = S, y = V

∂S

∂x
= 1,

∂V

∂y
= 1

∂S

∂y
= 0,

∂V

∂x
= 0

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

This is Maxwell’s first thermodynamic relation.
2. Second Relation
x = T, y = V

∂T

∂x
= 1,

∂V

∂y
= 1

∂T

∂y
= 0,

∂V

∂x
= 0

0 =

(
∂S

∂V

)
T

−
(
∂P

∂T

)
V(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

This is Maxwell’s second thermodynamic relation.
3. Third Relation
x = S, y = P

∂S

∂x
= 1,

∂P

∂y
= 1

∂S

∂y
= 0,

∂P

∂x
= 0

(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

This is Maxwell’s third thermodynamic relation.
4. Fourth Relation
x = T, y = P

∂T

∂x
= 1,

∂P

∂y
= 1

∂T

∂y
= 0,

∂P

∂x
= 0

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

This is Maxwell’s fourth thermodynamic relation.

4 Clausius Clayperon Equation

This relates the change in melting point and boiling point with change in pressure. The equation can be derived
from Maxwells second thermodynamic relation(

∂P

∂T

)
V

=

(
∂S

∂V

)
T

Multiplying both sides by T,

T

(
∂P

∂T

)
V

= T

(
∂S

∂V

)
T

=

(
T∂S

∂V

)
T
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=

(
∂Q

∂V

)
T

Here ∂Q represents the heat absorbed at constant temperature, ie latent heat, Let unit mass of the substance
under constant temperature get converted from one state to another absorbing an amount of hear L. Suppose
the specific volumes in the first and second state are V1 and V2, then ∂V = V2 − V1. Hence

T

(
∂P

∂T

)
V

=

(
L

V2 − V1

)
T

T

(
∂P

∂T

)
V

=
L

V2 − V1

∂P

∂T
=

L

T (V2 − V1)

This is Clausius Clayperon Equation.

Therefore, when V2 > V1, as for ice, gallium, the melting point increases with increase in When V2 < V1, as
for wax and sulphur, the melting point decreases with increase in pressure.

5 Ratio of Specific Heats

The coefficient of volume elasticity is

E =
Stress

Strain
= − dP

dV/V
= −V dP

dV

Therefore, the adiabatic elasticity ES (entropy constant) and isothermal elasticity ET (temperature constant)
are:

ES = −V
(
∂P

∂V

)
S

ET = −V
(
∂P

∂V

)
T

Dividing the two equations:
ES

ET
=

(∂P/∂V )S
(∂P/∂V )T

=
((∂P/∂T ).(∂T/∂V ))S
(∂P/∂S).(∂S/∂V ))T

Using Maxwell’s relations
ES

ET
=

(∂S/∂V )P (∂P/∂S)V
(∂T/∂V )P (∂P/∂T )V

=

(
∂S/∂V

∂T/∂V

)
P

(
∂P/∂S

∂P/∂T

)
V

=

(
∂S

∂T

)
P

(
∂T

∂S

)
V

Multiplying the numerator and denominator by T,

ES

ET
=
T
(
∂S
∂T

)
P

T
(
∂T
∂S

)
V

=

(
∂Q
∂T

)
P(

∂Q
∂T

)
V

But
(

∂Q
∂T

)
P

= CP and
(

∂Q
∂T

)
V

= CV Hence

CP

CV
= γ =

ES

ET
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6 Difference of Specific Heats(
∂Q
∂T

)
P

= CP and
(

∂Q
∂T

)
V

= CV

Therefore

CP − CV =

(
∂Q

∂T

)
P

−
(
∂Q

∂T

)
V

= T

(
∂S

∂T

)
P

− T
(
∂S

∂T

)
V

= T

[(
∂S

∂T

)
P

−
(
∂S

∂T

)
V

]
Let Entropy be a function of V and T

S = f(V, T )

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV

(
∂S

∂T

)
P

=

(
∂S

∂T

)
V

+

(
∂S

∂V

)
T

(
∂V

∂T

)
P(

∂S

∂T

)
P

−
(
∂S

∂T

)
V

=

(
∂S

∂V

)
T

(
∂V

∂T

)
P(

∂S

∂V

)
T

=

(
∂P

∂T

)
V

Therefore

CP − CV = T

[(
∂P

∂T

)
V

(
∂V

∂T

)
P

]
For a perfect gas

PV = RT(
∂P

∂T

)
V

= R/V

and (
∂V

∂T

)
P

= R/P

Substituting in the above equation,

CP − CV = T [R/V ×R/P ] = TR2/(PV ) = R

CP − CV = R

7 Stefan Boltzmans Law

The total radiant energy E emitted per second from unit surface area of a black body is proportional to the
fourth power of its absolute temperature T.

E ∝ T 4

E = σT 4

where σ is Stefans constant. In SI units, its value is 5.672× 10−8Js−1m−1K−4 According to Maxwells Second
Relation: (

∂S

∂V

)
T

=

(
∂P

∂T

)
V

We know
dQ = dU + PdV

dQ = TdS

TdS = dU + PdV
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dS = 1/T [dU + PdV ]

Substituting above,

1/T

[(
∂U

∂V

)
T

+ P

]
=

(
∂P

∂T

)
V(

∂U

∂V

)
T

+ P = T

(
∂P

∂T

)
V

According to Maxwells electromagnetic theory, the black body radiation exerts a pressure P on the walls
which is equal to u/3

P = u/3

If V is the volume of the enclosure and u is the energy density then the total internal energy U is

U = uV

Substituting in above equation: (
∂(uV )

∂V

)
T

+
u

3
=
T

3

(
∂u

∂T

)
V

u+
u

3
=
T

3

(
∂u

∂T

)
V

4u

3
=
T

3

(
∂u

∂T

)
V

du

u
= 4

dT

4

log u = 4log T + a

u = aT 4

The energy emitted per second per unit area is

E =
1

4
uc

where c is the velocity of light. Therefore

E =
1

4
aT 4c =

1

4
acT 4

E = σT 4

8 Joule-Thomson or Joule- Kelvin effect

Joule–Thomson or Joule–Kelvin effect , the change in temperature that accompanies expansion of a gas without
production of work or transfer of heat. At ordinary temperatures and pressures, all real gases except hydrogen
and helium cool upon such expansion; this phenomenon often is utilized in liquefying gases. The phenomenon
was investigated in 1852 by the British physicists James Prescott Joule and William Thomson (Lord Kelvin).
The cooling occurs because work must be done to overcome the long-range attraction between the gas molecules
as they move farther apart. Hydrogen and helium will cool upon expansion only if their initial temperatures
are very low because the long-range forces in these gases are unusually weak.

We know
H = U + PV = constant

d(U + PV ) = 0

dU + PdV + V dP = 0

from first and second law of thermodynamics

TdS = dU + PdV

TdS + V dP = 0
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Let Entropy be a function of P and T
S = f(P, T )

dS =

(
∂S

∂P

)
T

dP +

(
∂S

∂T

)
P

dT

Substituting in above equation

T

[(
∂S

∂P

)
T

dP +

(
∂S

∂T

)
P

dT

]
+ V dP = 0

Now

T

(
∂S

∂T

)
P

= CP

and (
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

Therefore

−T
(
∂V

∂T

)
P

dP + CP dT + V dP = 0

CP dT = T

(
∂V

∂T

)
P

dP − V dP

CP dT =

[
T

(
∂V

∂T

)
P

− V
]
dP

dT

dP
=

1

CP

[
T

(
∂V

∂T

)
P

− V
]

(
dT

dP

)
H

=
1

CP

[
T

(
∂V

∂T

)
P

− V
]

If
(
∂T
∂P

)
H

is positive there is a heating effect If
(
∂T
∂P

)
H

is negative there is a cooling effect If
(
∂T
∂P

)
H

is positive
there is neither cooling or heating effect

For a perfect gas
PV = RT

V = RT/P(
∂V

∂T

)
P

=
R

P

Substituting (
dT

dP

)
H

=
1

CP

[
T

(
R

P

)
− V

]
= 0

So Joule-Kelvin Effect for a perfect gas is zero.

9 Reversible Cell

A reversible cell is like a heat engine, where the cell is charged and discharged to get it back to its original
condition.

Consider a reversible cell of emf E at temperature T1. Let a charge q pass through it to charge it to an
emf E. Lets say this cell does W amount of work and its emf drops from E to (E − dE) and temp from T to
(T − dT ). Now a charge q is passed in the reverse direction and the cell comes back to its original condition.

This is exactly a Carnot Cycle with two adiabatic and two isothermal processes. Hence we apply the same
formula as for Carnot engine. From second law of thermodynamics:

Work done per cycle

Heat absorbed
=

Difference in temperature

Temperature of the source

W

Q
=

(T1 − T2
T1

=
dT

T
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Work done during charging =Eq Joules Let h be the energy drawn at high temperature.

W

h
=
dEq

h
=
dT

T

h = Tq
dE

dT

The total energy provided by the cell is Eq.

Eq = h+Hq

Eq = Tq
dE

dT
+Hq

E = H + T
dE

dT

This is Gibbs-Helmholtz Equation. If dE
dT is positive then emf rises with rise in temperature. If dE

dT is negative

then emf falls with rise in temperature. If dE
dT is zero then no change in emf with temperature.
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