Astronomical data

Dr Priya Hasan Asst Professor in Physics Maulana Azad National Urdu University Hyderabad priya.hasan@gmail.com

The positions of the constellation figures shown on the Farnese Atlas point to a date of 125 b.c., matching that of a long-lost star catalog by ancient Greek astronomer Hipparchus.Gerry Picus, courtesy Griffith Observatory

Present times in terms of Data....

- Digital data
- In depth study of individual objects
- Survey data of larger (or complete) sky
- ESO-VISTA 150TB/per year, LSST 500 TB/month
- Simulations TNG 300 +TNG 100 > PB data (2018 release)
- Data Centres
- Jupyter Notebooks

Types of Data

- Images
- Catalogs
- Spectra
- Polarization
- Time-series

Types of Data: Images

- 2-D array, pixel value-brightness
- RGB images
- Artificial colors
- (related to wavelength/energy)

Basics of Data: Images

- Point sources
- Extended sources

Figure 1.9. Willard S. Boyle (left) and George E. Smith, inventors of the charge-coupled device at the Bell Labs research center at Murray Hill, New Jersey in December 1974 when they received their patent for the CCD. Credit: Lucent Technologies Bell Labs.

CCDs

- Sensitivity (QE)
- dynamic range
- linearity.
- CCDs ~ 80%
 quantum efficiency

Fig. 3.6. CCD linearity curve for a typical three-phase CCD. We see that the device is linear over the output range from 500 ADU (the offset bias level of the CCD) to 26,000 ADU. The pixel full well capacity is 150,000 electrons and the A/D converter satuartion is at 32,767 ADU. In this example, the CCD nonlinearity is the limiting factor of the largest usable output ADU value. The slope of the linearity curve is equal to the gain of the device.

Digital is better than digitised!!!

Colors: Bayer filter (Eastman Kodak)

- Color filter array (CFA) for arranging RGB color filters on a square grid of photosensors. The filter pattern is 50% green, 25% red and 25% blue
- used in digital cameras, camcorders, and scanners to create a color image.

Astronomy Images

- Filters in succession
- Create RGB images
- Artificial colors

Figure 3: Two images of Westerlund 2. Image credit left: 2 m Faulkes Telescope operated by Las Cumbres Observatory at Siding Spring under license CC BY-2.0. Image on the right: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

FITS

- Flexible Image Transport System (FITS) is an open standard defining a digital file format useful for storage, transmission and processing of data: formatted as multi-dimensional arrays (for example a 2D image), or tables.
- FITS was designed specifically for astronomical data
- Includes provisions such as describing photometric and spatial calibration information, together with image origin metadata.
- FITS is also often used to store non-image data, such as spectra, photon lists, data cubes, or structured data such as multi-table databases. A FITS file may contain several extensions, and each of these may contain a data object. For example, it is possible to store x-ray and infrared exposures in the same file.

Brightness

216=65536

Figure 4: Part of the Westlund 2 image taken through an R (red) filter in April 2017 with the 2 m Faulkes Telescope operated by Las Cumbres Observatory at Siding Spring in Australia with different scaling. Left: Linear scaling from 0 to 65536. Center: Linear scaling from 4572 to 6002. Right: Square scaling from 4572 to 6002

NGC 281

(3.6 μm) Spitzer image of NGC 281 from the Warm Spitzer image. The large blue square is the Chandra ACIS field and the cyan box is the Spitzer cyro data.

NGC 281 by Chandra

Types of Data: Spectra

- 1D data
- Energy distribution among diff wavengths
- Contribution of light from that particular wavelength region

Types of Data: Data Cubes

- 3D data
- For example, Integral Field Spectroscopy (IFS)
- Each pixel has a whole spectrum received from the pixel

Types of Data: Catalog Data

TOPCAT(1): Table Browser

<u>W</u>indow <u>S</u>ubsets <u>H</u>elp

Table Browser for 1: cantat_cat.vot

		_								
	Cluster	RAJ2000	DEJ2000	GLON	GLAT	r50	Nstars	pmRA	pmDE	
1	ASCC_10	51.87	34.981	155.723	-17.77	0.558	71	-1.737	-1.368	-
2	ASCC_101	288.399	36.369	68.028	11.608	0.372	75	0.934	1.288	
3	ASCC_105	295.548	27.366	62.825	2.063	0.648	127	1.464	-1.635	
4	ASCC_107	297.164	21.987	58.904	-1.901	0.174	59	-0.155	-5.156	
5	ASCC_108	298.306	39.349	74.378	6.074	0.537	230	-0.519	-1.69	
6	ASCC_11	53.056	44.856	150.546	-9.224	0.312	276	0.926	-3.03	
7	ASCC_110	300.742	33.528	70.411	1.378	0.203	70	0.271	-3.132	
8	ASCC_111	302.891	37.515	74.714	2.056	0.537	156	-1.15	-1.524	
9	ASCC_113	317.933	38.638	82.877	-6.589	0.529	196	0.8	-3.679	
10	ASCC 114	324.99	53.997	97.082	1.028	0.216	150	-3.716	-3.421	
11	ASCC_115	329.28	51.558	97.528	-2.504	0.25	39	-0.549	-0.543	
12	ASCC_12	72.4	41.744	162.986	-1.893	0.303	162	-0.634	-2.794	
13	ASCC 123	340.299	53.986	104.434	-4.141	1.294	55	12.093	-1.407	
14	ASCC_127	347.205	64.974	112.349	4.232	0.627	122	7.474	-1.745	
15	ASCC_128	349.949	54.435	109.77	-6.078	0.513	72	1.236	0.186	
16	ASCC_13	78.255	44.417	163.502	3.122	0.609	110	-0.473	-1.743	
17	ASCC_16	81.198	1.655	201.139	-18.373	0.376	226	1.355	-0.015	
18	ASCC_19	81.982	-1.987	204.914	-19.438	0.605	188	1.152	-1.234	
19	ASCC_21	82.179	3.527	199.938	-16.598	0.41	131	1.404	-0.632	
20	ASCC_23	95.047	46.71	167.472	14.416	0.319	129	1.098	-0.598	
21	100.00	102 571	1 67	214 742	0.100	0 107	E /	1 000	1 010	

- 0 🖸

Time series data

T_t	C_t (p=8)	S_t (p=4)	N_t	Y_t																		
100	1	0.6	1.06	63.6																		
101	1.2	1	0.94	113.928						E	xan	əlar	e Tir	ne S	erie	es						
102	1.4	1.4	1.04	207.9168	250							.1										
103	1.2	1	0.93	114.948	 250																	
104	1	0.6	1.1	68.64																		
105	0.8	1	0.96	80.64	200			Λ								Λ						
106	0.6	1.4	1.09	97.0536				/ \								/ \						
107	0.8	1	1.09	93.304	 150				\mathbf{h}						-/							
108	1	0.6	1.04	67.392																		
109	1.2	1	0.93	121.644	 100		/					~	-		-				-	-	_	
110	1.4	1.4	0.95	204.82						レ				\sim				く				
111	1.2	1	0.94	125.208	50																	
112	1	0.6	1.01	67.872																		
113	0.8	1	0.96	86.784	0																	
114	0.6	1.4	0.97	92.8872		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
115	0.8	1	0.98	90.16																		

Tools:

- Image Visualization: ds9
- Catalogs: TOPCAT
- Programming Languages: Pythonmodules, libraries
- Not to be used as black boxes

Meta-Data

- Descriptive information about the data
- Images: Telescope, exposure time....
- Simulations
- Spectra

What is an Astronomy Archive?

Organised, systematic information about the sky above us, we will call as an astronomy archive.

Today's archives are many terabytes and sometimes even petabytes in size

Astronomy Archives

• Hipparchus (190 – c. 120 BC)

850 stars, 1-6 mag

• Tycho Brahe (1546 – 1601)

positions of the naked eye planets as a function of time

Used by Kepler (first example of archival data!!

- 1603, Bayer, compiled his star catalogue, labeling every star in a constellation by its brightness.
- 1771, Charles Messier catalogue of nebulous objects ~ 100
- 1888, Dreyer: NGC catalogue > 7,000

Organised data!!!

Palomar sky survey

1950-1957, Oschin Schmidt Telescope at the Palomar Observatory, California, USA.

2,000 photographic plates of the night sky (14-inch (35.5-cm) square photographic plates, each covering 36 square degrees of sky)

1990s: DPOSS

And then Technology...

Digital data, QE, linear response

Citizen science projects

In other wavelengths too.....

• Similar growth in radio, Xray, etc

Technology goes hand-in-hand....

transistors			Μ	oore's la	aw			
1,000,000,000 -				Dual-0	Core Itan	ium® 2 p	rocesso	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							/	
				Ita	nium® 2	processo	r	
100,000,000 -							/	
				Pentiu	ım® 4 pr	ocessor		
10,000,000 -				Pentiur	n® III pro	ocessor		
10,000,000				ntium® II	-	or		
			Pentiur	n® proce	ssor			
1,000,000 -				80486				
			80386					
100.000		802	86					
100,000 -								
		8086			\sim			
10,000 -	8080 🧹				18 month	IS		
80	008							
	4004							
1,000 -	070 19	75 19	80 19	985 19	90 19	95 20	00 20	005
© 2013 Encyclopædia B						20		

Astronomy Archives

- In the true spirit of science
- Available to all

(ex instrument groups, proprietary period, etc)

• Citizen Science projects: SETI, Galaxy Zoo,

Data Archives

VizieR: access to the most complete library of published astronomical catalogues and online data tables

Simbad: Astronomical database which provides basic data, cross-identifications, bibliography

NED The NASA/IPAC Extragalactic Database (NED): multi-wavelength fusion of data for millions of objects outside the Milky Way galaxy. SDSS DR15 Sloan Digital Sky Survey: systematic map of a quarter of the sky, producing new catalogues for deep-sky.

2MASS Two Micron All Sky Survey (2MASS) : map of the entire sky in near-infrared.

ESO data archive: ESO observational data

MAST The Multimission Archive at STScI: scientifically related data sets in the optical, ultraviolet, and near-infrared parts of the spectrum.

2dFGRS The 2dF Galaxy Redshift Survey (2dFGRS) is a spectroscopic survey and spectra is obtained for 245591 objects, mainly galaxies. IPAC/IRSA: NASA's infrared and sub-millimeter astronomy projects and missions.

HLA The Hubble Legacy Archive (HLA): optimize science from the HST providing online, enhanced Hubble products and advanced browsing capabilities.

Hubble MAST

Hubble MAST

- MAST Observations: Millions of observations from Hubble, Kepler, GALEX, IUE, FUSE, and more.
- Virtual Observatory: Search thousands of astronomical data archives from around the world for images, spectra, and catalogs.
- Hubble Source Catalog: A master catalog with a hundred million measurements of objects in Hubble images.
- MAST Catalogs: Access to catalog data such as Gaia and TESS Input Catalog, with more coming soon.

GAIA: 6D revolution RA, Dec, parallax, RV, pmra, pmdec

- Two identical, three-mirror anastigmatic (TMA) telescopes, with apertures of $1.45 \text{ m} \times 0.50 \text{ m}$ pointing in directions separated by the
- basic angle
- (Γ = 106 ° .5)
- Accuracy of 24 microarcsec= 42 kpc, 0.06arcsec pixels

Galactic Archealogy!!! Imagine!!!

GMRT Online Archive This interface allows one to view the data. In order to download the data you have to log in. NCRA • TIFR

Q Search

Proposal Level Search		Scan Level Search							
Proposal Code:		Proposal code:							
Principal Investigator:		Principal Investigator:							
Proposal Title:		Near Object:	SIMBAD NED						
Proposal Submission Year:	Start Year Tend Year T	Near Co-ordinates:	RA (J2000) i						
Time Allocated:	Less than Time hrs		DEC (J2000)						
Scientific Category:	Select Category 💌		Search Radius arcmin						
Observation Type:	Select Observation Type	Frequency Band:	Select						
	Reset Search	Frequency Value:	Less than Value MHz						
		Channel Spacing:	Select						
Observation Level Search		Time On Source:	Less than Time Mins.						

CHANDRA X-RAY DBSERVATORY

publications.

observations.

· CIAO Tools: There are command-line scripts for finding and downloading publicly-available

Chandra Data Archive ChaSeR Chandra Source Catalog
 CSCview Chandra Footprint Service Request for Acknowledgement

SEARCH CXC.HARVARD.EDU Google Custom Search Search

The Archive

- Search and Retrieve Data
- Advanced Data Services
- Archive User Services
- Chandra Aggregated Datasets
- Publishing Chandra Results **Data Analysis Links**

The Sloan Digital Sky Survey has created the most detailed three-dimensional maps of the Universe ever made, with deep multi-color images of one third of the sky, and spectra for more than three million astronomical objects. Learn and explore all phases and surveys—past, present, and future—of the SDSS.

Literature Survey

https://vizier.u-strasbg.fr/viz-bin/VizieR

Vizier Demo....