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15.1 Background

When a planet crosses in front of or “transits” its host star, it blocks a tiny
bit of its light. While we can’t see the shadow of the planet (even the star is
less than a pixel across in our cameras), we can see the starlight dim.

15.1.1 Measuring the Distance from the Star to the
Planet

Recall Kepler’s Third Law,
P 2 9 a3,

where P is the planet’s orbital period, and a is its semi-major axis (for a
circular orbit, this will be the orbital radius).

a3

P 2
“

GpM˚ ` Mpq

4⇡2
,

where M˚ is the mass of the host star, Mp is the mass of the planet, and G

is Newton’s gravitational constant.
If Mp †† M˚ (the star is much more massive than the planet), then

M˚ ` Mp « M˚, and
a3

P 2
“

GM˚

4⇡2

a3 “ GM˚

P 2

4⇡2

a3 “ GM˚

ˆ

P

2⇡

˙2

a “

«

GM˚

ˆ

P

2⇡

˙2
ff

1

3

(15.1)

The mass of the star, M˚, is generally known. The period, P , is the time
between two successive transits. In practice, we want to see three transits in
a row, to be sure that we’re looking at passes of the same planet (there might
be others in its solar system). If the time between each pair of transits is the
same, we’ve probably got the same planet in each case. In Equ. 15.1, M˚

must be in kilograms, and P is in seconds. This will give you a semi-major
axis in meters.
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Figure 15.1: Folded light curve of Kepler-6b, showing the transit.

15.1.2 Measuring the Size of the Planet

Outside of a transit, we detect the total flux of the star, Ftot. During a transit,
the planet blocks part of the flux of the star. If the star is evenly illuminated
on its surface (not entirely true, but we’ll start with this assumption), then
the planet blocks some of the starlight, so we detect a lower flux, Ftrans. The
amount by which the total light is dimmed, Ftot ´Ftrans, is to the total light
Ftot as the planet’s area is to the star’s area. [awk] That is,

Ftot ´ Ftrans

Ftot

“
Ap

A˚

.

Since both the star and the planet are circular, we can write their area in
terms of radius, A “ ⇡r2. Substituting this in and simplifying the left hand
side,

1 ´
Ftrans

Ftot

“
⇡R2

p

⇡R2
˚

Canceling out the factors of ⇡ and solving for the radius of the planet, we
obtain

Rp “ R˚

c

1 ´
Ftrans

Ftot

(15.2)

We measure Ftrans and Ftot directly from the dip in the light curve, and
we look up the radius of the star, R˚, from a catalog (See §15.2.2). If the
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light curve is normalized (as in Fig. 15.1), then Ftot “ 1, and the equation
simplifies.

15.1.3 Calculating the Temperature of the Planet

Now that we know how far the planet is from its host star, and we know
how big the planet is, we can estimate the planet’s temperature. We’ll apply
the principle of “radiative balance,” which states that when it is in thermal
equilibrium and a constant temperature, a planet radiates out as much energy
per time (power or luminosity) in the form of light as it absorbs from its star.
We can write this as

Lem “ Labs,

where Lem is the luminosity—the power (energy per second)—emitted from
the planet by thermal radiation, and Labs is the power absorbed from its host
star.

Emission

Recall the Stefan-Boltzmann Law, which states that the flux (brightness) of
light emitted from a blackbody depends on its temperature:

Fem “ σT 4
p ,

where σ “ 5.6704 ˆ 10´8 W
m2K4 is the Stefan-Boltzmann constant, and Tp is

the blackbody’s temperature (the planet, in this case). Flux is energy per
time per area, which in this case is the surface area of the planet. Since flux
is power per area, F “ L

A
, then the luminosity emitted is the flux times the

surface area, giving us simply the energy per time:

L “ FA.

The surface area of a sphere is A “ 4⇡R2, and so we get

Lem “ σT 4
p 4⇡R2

p.

Absorption

The other side of the equation is the luminosity absorbed by the planet.
Recalling that L “ FA,

Labs “ (absorption coefficient) ˆ FincAcross,
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where “absorption coefficient” accounts for how well the planet absorbs light,
Finc is the incident flux from the star hitting the planet, and Across “ ⇡R2

p

is the cross-sectional area of the planet, a circle. Why do we use the en-
tire surface area for emission but only the cross-section area for absorption?
Because the starlight is only shining on one side of the planet! The planet
“intercepts” a cone of starlight as wide as its cross-section.

So what is this “absorption coefficient”? Well, dark surfaces absorb (and
emit) light better than light surfaces do, so we can account for this with a
number that scales with how dark it is–how well it absorbs light. However,
there’s already a coefficient called “albedo,” ↵, which is how light a surface
is. Albedo is 0 for a perfectly black, absorbing surface and 1 for a perfectly
white, reflecting surface. So it’s the opposite concept from our absorption
coefficient, and we can write

absorption coefficient “ 1 ´ ↵.

We don’t know what the planet’s albedo really is without more information,
but based on models, we’ll take it to be ↵ “ 0.07.

The incident flux is the intensity of light from the star at the planet’s
distance from it. As the light from the star travels out into space, it expands
out evenly in all directions, spreading out in the shape of a sphere. When
it reaches the planet, that sphere of light has a radius equal to the planet’s
distance from the star, a. So recalling that F “ L

A
, we write

Finc “
L˚

4⇡a2
,

where the surface area of the sphere of light is 4⇡a2. We can write the
luminosity of the star, L˚, in terms of its temperature and size using the
Stefan-Boltzmann equation and surface area, just like we did for the planet
above:

L˚ “ σT 4
˚
4⇡R2

˚
.

Substituting all of these components into our first equation, we find

Labs “ p1 ´ ↵q
σT 4

˚
4⇡R2

˚

4⇡a2
⇡R2

p

Simplifying,

Labs “ p1 ´ ↵qσT 4
˚

R2
˚

a2
⇡R2

p
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Equilibrium Temperature

Recall
Lem “ Labs

σT 4
p 4⇡R2

p “ p1 ´ ↵q σT 4
˚

R2
˚

a2
⇡R2

p

The σ and ⇡R2
p cancel out on both sides.

T 4
p “

1

4
p1 ´ ↵qT 4

˚

R2
˚

a2

Solving for Tp,

Tp “ T˚

„

p1 ´ ↵q
R2

˚

a2

⇢
1

4

, (15.3)

where T˚ is the star’s surface temperature in degrees K, the albedo is ↵ „ 0.07
(an assumption), R˚ is the star’s radius, and a is the planet’s orbital semi-
major axis. Both R˚ and a must be in the same units, regardless of what
units those are. That way, the units will cancel out. It’s best to put them
in either m or km, but be sure which you’re using. All of the units on the
right hand side will cancel out, except for degrees K, and so the planet’s
temperature, Tp, will be in K.

While we’ve cleaned up all of that mess in the derivation, this is still a
somewhat obscure-looking equation. Let’s take a look at it to see what’s
going on. On the right hand side, we have T˚, so the temperature of the
planet is proportional to the temperature of the star. That makes sense.
The hotter the star, the more light shines on the planet, heating it up. We
have 1 ´ ↵, so the whiter the planet (greater albedo, ↵), the less light it
absorbs, and 1 ´ ↵ lowers its temperature. There is R˚, so the bigger the
star, the more light shines out, heating the planet. And finally 1{a, so the
farther away the planet is from its star (greater a), the less light reaches it,
and the cooler it is. All of these check out with what we would expect.

15.2 Target List

The MAST archive at Space Telescope has a very clean set of light curves for
five of the first Kepler planets found. For this exercise, then, we will analyze
the planets listed in Table 15.1.
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Table 15.1: Kepler Targets

Common Name Kepler Catalog #

Kepler-4 b KPLR11853905
Kepler-5 b KPLR8191672
Kepler-6 b KPLR10874614
Kepler-7 b KPLR5780885
Kepler-8 b KPLR6922244

15.2.1 Obtaining Planet Transits

Go to the MAST (Mikulski Archive for Space Telescopes) archive at archive.
stsci.edu1 to find the time series data on these five Kepler targets. From
the MAST home page, select High-Level Science Products (HLSP). Scroll
down and select Kepler Objects (KEPLER HLSP). This page has both tran-
sit and radial velocity data for the first five planets found with the Kepler
Space Telescope.

For each planet:

1. Download the “Kepler Time Series,” which records the transit data,
and save it as a text file or CSV. This will be used to find the planet
period and radius.

2. Download the “Ground-based Time Series,” which records radial ve-
locity data, and save it as a text file or CSV. This will be used to find
the planet mass. You will only need to keep the first two columns.

Important Note: In some browsers on Windows computers (often Internet
Explorer, but check any of them for this bug), the file is saved without any
carriage-returns at the end of the lines, so the entire file comes out as a single
line. If this happens, first try opening the file in a di↵erent text editor. If
that does not fix the problem, switch to a di↵erent browser.

15.2.2 Obtaining Stellar Data

Go to this website to look up the host star data for each of these planets:
exoplanet.eu

1If you can’t access the website in your browser, try using https rather than http.
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For each planet:

1. Select All Catalogs.

2. In the Planet Search field, search for planet Kepler 6b (for example)
with this syntax: ‘‘kepler-6 b’’ IN name

Include the quotation marks. Important Note: The website is very
picky with the planet name, and while capitalization does not matter,
you must use the correct spacing and punctuation. Kepler 6b, for
example, must be written kepler-6 b. The other Kepler planets will
have the same naming format.

3. Select the result that comes up.

4. Look on the right side of the page for Star Data. Record the star’s
mass (in solar masses, MSun or Md) and radius (in solar radii, RSun

or Rd). You will convert these to the units you need in your final
calculations.

15.3 Analyzing a Light Curve With a Spread-

sheet

[See video.]

15.4 Getting the Planet’s Mass From Radial

Velocity

Get the radial velocity (Doppler shift) table for the star and import it into
Excel. If it’s short enough, it may be easier to copy and paste each individual
number into a cell, but be sure to copy the negative signs when they appear.
The columns we are interested in are the time the observation was made
(“Barycentric Julian Date,” in days) and the radial velocity in m/s.

Using your results from the transit plots, apply the modulo function to the
Julian Date as you did before, using the same orbital period you found in your
earlier work, and call this the “Modulo Julian Date.” Now plot the radial
velocity vs. modulo Julian Date, and you’ll see a graph resembling a very
sparsely-sampled sine wave. This shows how fast the star is moving towards
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and away from us as the planet orbits it. We can use this to determine the
planet’s mass.

Identify the fastest speed the star moves, whether it’s positive or negative.
Take the absolute value and call that v˚, max.

Then the mass of the planet, Mp, is

Mp “
v˚, max

sin i

c

aM˚

G
,

where i is the inclination angle of the planet’s orbit, a is its semimajor axis
(distance from the star to the planet), M˚ is the mass of the star, and G is
Newton’s gravitational constant. The inclination angle is the angle between
the axis of the planet’s orbit and our line of sight. Since the planet crosses in
front of the star as we look at it, that is going to be very, very close to 90˝.
We can actually calculate it more exactly from our transit data, but for our
purposes, 90˝ is close enough. Since sin 90˝ “ 1, then we are simply left with

Mp “ v˚, max

c

aM˚

G
. (15.4)

For the units to work correctly, remember that masses should be in kg,
distances in m, and speeds in m/s.

The density of the planet is found by dividing its mass by its volume.
Since it is a sphere, the volume is V “ 4

3
⇡r3p, where rp is the planet’s radius,

and the density, ⇢p (in kg/m3), is

⇢p “
Mp

p4{3q ⇡ r3p
.

It is often convenient to convert the density into grams per cubit centimeter,
because the gram was originally defined as the mass of one cubic centime-
ter of water. The unit conversion is simple—just divide kg/m3 by 1,000:

⇢ pg{cm3q “ ⇢ pkg{m3q
1000

, and note for comparison that ⇢water “ 1 g{cm3.
The density gives us a clue what the planet is likely to be made of.

Di↵erent kinds of materials have di↵erent densities, but they may not be
the same density that substance would have sitting in a lab on Earth. The
exact density depends on the strength of the gravitational force squeezing
them...which itself depends on the density of the material making up the
planet! Fortunately, planetary geologists have come up with charts showing
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Figure 15.2: Planet composition as a function of size (radius, R) and mass
(M). The horizontal scales give mass in Earth masses (MC, bottom) and
Jupiter masses (MJ , top). The vertical scales give radius in 10,000s of km
(R rˆ104 kms) and Jupiter radii (RJ). The curved lines show the size as a
function of mass for planets of di↵erent compositions, and density increases
down and to the right. We can look at the location of the Earth to see how
to read this. It lies between the pure rock and pure iron curves, but close to
the pure rock, so we would conclude that Earth is mostly rock, with some
component of iron (the core).
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the densities of di↵erent mixtures of gasses, ices, and rock for planets of a
given size and mass (Figure 15.2).


