Astrophysics of Neutron Stars : The Magnetic Field

Sushan Konar

Astronomy from Archival Data

An IAU-OAD Project

2020

Sushan Konar

Astrophysics of Neutron Stars

The Magnetic Field

- The Glitch
- The Origin
- The Transport
- The Evolution

The Glitch

Magnetic Field Glitch

The Glitch

Image credit : Lisa Drummond

Astrophysics of Neutron Stars

The Glitch

- sudden decrease in *P* ($10^{-12} \le \delta \nu / \nu \le 10^{-4}$)
- followed by a relaxation towards unperturbed P

Statististics of Glitch

Figure credit : Yu M. et al., MNRAS, 429, 688 (2013)

Neutron Supefluidity

- rotation by creation of vortices
- quantum of circulation :
- $I_n = h/2m_n \sim 2 \times 10^{-3} \ cm^2.s^{-1}$

• number of rotational vortices : $2\pi R^2 \Omega_{\rm NS}/I_n \sim 2 \times 10^{16} (P/s)^{-1}$

Figure credit : Graber, V. et al., Int.J.Mod.Phys., D26, 08, 1730015 (2017)

Superfluid Dynamics

- $\bullet~$ sf spin-down \rightarrow number of rotation vortices $\downarrow~$
- vortices pinned to inner crust : $\delta \nu / \nu \lesssim 10^{-3}$
- $(\nu_{\rm SF} \nu_{\rm NS})$ \uparrow \rightarrow unpinning
- $\bullet~$ unpinning \rightarrow angular momentum transfer \rightarrow spin-up

Crust-quake

- $\bullet \ \text{spin-down} \rightarrow \text{centrifugal force} \downarrow$
- ellipticity change \rightarrow mechanical stress \uparrow
- crust cracking $\rightarrow -\delta I/I = \delta \nu/\nu \uparrow$

crustal energy not sufficient?

Superfluid Dynamics

- $\bullet~$ sf spin-down \rightarrow number of rotation vortices $\downarrow~$
- vortices pinned to inner crust : $\delta \nu / \nu \lesssim 10^{-3}$
- $(\nu_{\rm SF} \nu_{\rm NS})$ \uparrow ightarrow unpinning
- $\bullet~$ unpinning \rightarrow angular momentum transfer \rightarrow spin-up

Crust-quake

- spin-down \rightarrow centrifugal force \downarrow
- $\bullet \ \text{ellipticity change} \rightarrow \text{mechanical stress} \uparrow$
- crust cracking $\rightarrow -\delta I/I = \delta \nu / \nu \uparrow$

crustal energy not sufficient?

Glitch : New Directions?

Young glitching pulsars to Magnetars?

Glitch Phenomenology

Trigger :

- catastrophic vortex unpinning
- thermal pulse due to star-quake
- crust cracking due to magnetic stresses

Summary :

- likely two different origins for glitches
- relation between glitch & flux expulsion
- multiple glitch : pulsar \Rightarrow magnetar

Trigger :

- catastrophic vortex unpinning
- thermal pulse due to star-quake
- crust cracking due to magnetic stresses

Summary :

- likely two different origins for glitches
- relation between glitch & flux expulsion
- multiple glitch : pulsar \Rightarrow magnetar

The Origin

Dipolar Field

• $B_{
m surface} \sim 10^8 - 10^{15} \ {
m G}$ • $P_{
m spin} \sim 10^{-3} - 10^{1.5} \ {
m s}$

 $B_{\text{light-cylinder}}$ has a wide range.

Figure credit : Jodrell Bank Observatory

Internal Configuration

Ciolfi, R., Astron. Nachr., 335, 624, (2014)

Internal Configuration

Figure credit : Geppert U. et al. ASP Conf.Ser., 466, 107 (2012)

Sushan Konar

Multipolar Field

- pulsar emission smaller radius of curvature required
- existence of slow pulsars ($P_s^{max} = 23.5$ s) very strong, twisted surface field (*Tan C. M. et al., ApJ, 866, 12 (2018)*)
- indication from magnetar activity

Multipolar Field

- Surface footprints of field
- indication from magnetar activity

Figure credit : Deshpande A. A., Rankin J., ApJ, 524, 1008 (1999)

Magnetic Fields : Measurements

Dipolar Field at large distances.

- Measurements :
 - secular spin-down : $B \propto (P\dot{P})^{1/2}$, only dipolar field
 - channelised accretion : $B \propto \dot{M}^{1/2}$, dipolar field at Alfven radius
 - cyclotron line-emission : total field strength

Uncertainties :

- primarily large-scale dipolar field measured
- no understanding of multipolar structure near surface
- no knowledge of the total field structure

Dipolar Field at large distances.

- Measurements :
 - secular spin-down : $B \propto (P\dot{P})^{1/2}$, only dipolar field
 - channelised accretion : $B \propto \dot{M}^{1/2}$, dipolar field at Alfven radius
 - cyclotron line-emission : total field strength
- Uncertainties :
 - primarily large-scale dipolar field measured
 - no understanding of multipolar structure near surface
 - no knowledge of the total field structure

Magnetic Field : Origin

Generation in the Core :

- fossil field : flux freezing from pre-collapse core field $[(R_{progenitor}/R_{NS})^2 \sim 10^{10}]$
- 2 magnetized core : spontaneously magnetized state of matter
- turbulent dynamo amplification in proto-neutron star core

Oeneration in the Crust :

- thermo-electric battery/dynamo in crust
- strong toroidal field in deeper regions of crust

None of the proposed processes are problem-free.

Magnetic Field : Location

Location -

• superconducting flux tubes in the core

 $\phi = hc/2e = 2 \times 10^{-7} \text{G.cm}^2, \ 10^{31} \text{ fluxoids}$

- crustal currents
- charged particle currents in the core (n-p-e plasma)

Evolution -

actual dissipation only in metallic crust

For details see - Konar S., JApA, 38, 47 (2017)

Transport Properties

Electrical Conductivity

Sushan Konar

Electrical Conductivity : Impurity

Figure credit : Chamel N., Pawel H., LRR, 11, 1 (2008)

Thermal Conductivity

Figure credit : Chamel N., Pawel H., LRR, 11, 1 (2008)

Sushan Konar

Astrophysics of Neutron Stars

Accreting Neutron Star

Figure credit : Chamel N., Pawel H., LRR, 11, 1 (2008)

Heated Crust

Figure credit : Chamel N., Pawel H., LRR, 11, 1 (2008)

Heated Crust : Impurity

Figure credit : Chamel N., Pawel H., LRR, 11, 1 (2008)

Accreted Crust

Chamel N., Pawel H., LRR, 11, 1 (2008)

Astrophysics of Neutron Stars

The Evolution

Induction Equation

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) - \frac{\mathbf{c}^2}{4\pi} \nabla \times (\frac{1}{\sigma} \nabla \times \mathbf{B})$$

 σ - electrical conductivity v - velocity of material movement

field evolution = flux transport + Ohmic diffusion $(\tau_{\text{diff}} \sim \frac{4\pi\sigma L^2}{c^2})$

 $\sigma = \sigma(\rho, \boldsymbol{Z}, \boldsymbol{A}, \boldsymbol{T}, \boldsymbol{Q})$

NS Parameters : ρ , Q

Sushan Konar

(1)

Isolated Neutron Star

• Spin-Down :

- spin-down \rightarrow expulsion of rotational vortices
- \bullet inter-pinning \rightarrow expulsion of magnetic fluxoids

Field Evolution

- flux-expulsion \rightarrow flux deposition at core-crust boundary
- flux in metallic crust \rightarrow Ohmic dissipation
- Hall transport & ambipolar diffusion in metallic crust
- Glitch induced Field Evolution
 - increased magnetic stress at core-crust boundary
 - crust-cracking \rightarrow expulsion of magnetic fluxoids

Isolated Neutron Star

• Spin-Down :

- spin-down \rightarrow expulsion of rotational vortices
- inter-pinning \rightarrow expulsion of magnetic fluxoids
- Field Evolution
 - flux-expulsion \rightarrow flux deposition at core-crust boundary
 - flux in metallic crust \rightarrow Ohmic dissipation
 - Hall transport & ambipolar diffusion in metallic crust
- Glitch induced Field Evolution
 - increased magnetic stress at core-crust boundary
 - crust-cracking \rightarrow expulsion of magnetic fluxoids

Isolated Neutron Star

- Spin-Down :
 - spin-down \rightarrow expulsion of rotational vortices
 - inter-pinning \rightarrow expulsion of magnetic fluxoids
- Field Evolution
 - flux-expulsion \rightarrow flux deposition at core-crust boundary
 - flux in metallic crust \rightarrow Ohmic dissipation
 - Hall transport & ambipolar diffusion in metallic crust
- Glitch induced Field Evolution
 - increased magnetic stress at core-crust boundary
 - \bullet crust-cracking \rightarrow expulsion of magnetic fluxoids

Ohmic Dissipation

evolution of surface field (poloidal) (numbers indicate order of multipole)

Figure credit : Mitra D., Konar S., Bhattacharya D., MNRAS, 307, 459, (1999)

- spin-down induced flux-expulsion followed by Ohmic dissipation Jahan-Miri M., ApJ, 532, 514 (2000)
- enhanced Ohmic dissipation in accretion heated crust *Konar S., JApA, 38, 47 (2017)*
- diamagnetic screening followed by re-emergence Cumming AI, Zweibel E., Bildsten L., ApJ, 557, 958 (2001)
- burial through fallback hyper-critical accretion followed by re-emergence Bernal C. G., Page D., Lee W. H., ApJ, 770, 12 (2013)

Multipolar Fields

Multipole Mixing :

$$\mathbf{B} = \mathbf{B}_{\mathrm{p}} + \mathbf{B}_{\mathrm{t}},\tag{2}$$

$$\mathbf{B}_{\mathrm{p}} = B_{\mathrm{r}} \mathbf{e}_{\mathrm{r}} + \mathbf{B}_{\theta} \mathbf{e}_{\theta}, \qquad (3)$$

$$\mathbf{B}_{t} = B_{\phi} \mathbf{e}_{\phi}. \tag{4}$$

$$\frac{\partial \mathbf{B}_{p}}{\partial t} = \nabla \times (\mathbf{v}_{tr} \times \mathbf{B}_{p}) + \frac{\mathbf{c}}{4\pi \mathbf{e}} \nabla \times \left(\frac{1}{\mathbf{n}} (\nabla \times \mathbf{B}_{t}) \times \mathbf{B}_{p}\right) - \frac{\mathbf{c}^{2}}{4\pi} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{B}_{p}\right)$$

$$\frac{\partial \mathbf{B}_{t}}{\partial t} = \nabla \times (\mathbf{v}_{tr} \times \mathbf{B}_{t}) + \frac{\mathbf{c}}{4\pi \mathbf{e}} \nabla \times \left(\frac{1}{\mathbf{n}} (\nabla \times \mathbf{B}_{p}) \times \mathbf{B}_{p}\right)$$

$$+ \frac{\mathbf{c}}{4\pi \mathbf{e}} \nabla \times \left(\frac{1}{\mathbf{n}} (\nabla \times \mathbf{B}_{t}) \times \mathbf{B}_{t}\right) - \frac{\mathbf{c}^{2}}{4\pi} \nabla \times \left(\frac{1}{\sigma} \nabla \times \mathbf{B}_{t}\right).$$
(5)
(6)

Material Transport / Hall Term : Multipole Mixing

Polar Cap Accretion

Figure credit : Dipanjan Mukherjee

• material accumulation confined by magnetic stresses

• material sinks & flows side-wise for $P_{column} \gtrsim P_{mag.}$

Flow Pattern

- equator-ward in topmost layer
- counter-flow in intermediate layers
- radial in deeper layers

Figure credit : Arnab Rai Choudhuri, Sushan Konar

Field Distortion

Figure credit : Payne D. J. B, Melatos A., MNRAS, 351, 569 (2004)

Sushan Konar

- initial toroidal fields
- generation of higher multipoles/toroidal fields by accretion material flow
- final resultant field structure observational indication

Inter-pinned Superfluids

